Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Plant Physiol ; 289: 154080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699261

RESUMO

Modification of lipid composition in the mesocarp tissue of oil palm involves genetic manipulation of multiple genes. More than one mesocarp-preferential promoter is necessary for the expression of individual transgenes in the same plant to obviate transcriptional gene silencing. This study aimed to identify genes that are preferentially expressed in the mesocarp tissue and characterize selected candidate mesocarp-preferential promoters. Ten transcripts that were preferentially expressed in the mesocarp tissue were identified from the analysis of 82 transcriptome datasets of 12 different oil palm tissues. The expression of two candidate genes, MSP-C1 and MSP-C6, was verified to be preferentially expressed in the mesocarp tissues and shown to have a low expression level in non-mesocarp tissues by reverse transcription quantitative real-time PCR (RT-qPCR). MSP-C6 promoter fragments of different lengths were transformed into tomato plants for further characterization. Both unripe and ripe fruits of transgenic tomato plants transformed with a construct harboring the MSP-C6-F1 (2014 bp) promoter were shown to have high beta-glucuronidase (GUS) activities. The findings of this study suggest the potential applications of the MSP-C6 promoter as a molecular tool for genetic engineering of novel traits in fruit crops.


Assuntos
Frutas , Solanum lycopersicum , Regiões Promotoras Genéticas/genética , Transgenes , Frutas/genética , Frutas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Engenharia Genética , Regulação da Expressão Gênica de Plantas/genética , Glucuronidase/genética , Glucuronidase/metabolismo
2.
Molecules ; 28(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37241958

RESUMO

The inclusion of fluorine motifs in drugs and drug delivery systems is an established tool for modulating their biological potency. Fluorination can improve drug specificity or boost the vehicle's ability to cross cellular membranes. However, the approach has yet to be applied to vaccine adjuvants. Herein, the synthesis of fluorinated bioisostere of a clinical stage immunoadjuvant-poly[di(carboxylatophenoxy)phosphazene], PCPP-is reported. The structure of water-soluble fluoropolymer-PCPP-F, which contains two fluorine atoms per repeat unit-was confirmed using 1H, 31P and 19F NMR, and its molecular mass and molecular dimensions were determined using size-exclusion chromatography and dynamic light scattering. Insertion of fluorine atoms in the polymer side group resulted in an improved solubility in acidic solutions and faster hydrolytic degradation rate, while the ability to self-assemble with an antigenic protein, lysozyme-an important feature of polyphosphazene vaccine adjuvants-was preserved. In vivo assessment of PCPP-F demonstrated its greater ability to induce antibody responses to Hepatitis C virus antigen when compared to its non-fluorinated counterpart. Taken together, the superior immunoadjuvant activity of PCPP-F, along with its improved formulation characteristics, demonstrate advantages of the fluorination approach for the development of this family of macromolecular vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos , Flúor , Adjuvantes Imunológicos/química , Adjuvantes de Vacinas , Polímeros/química , Compostos Organofosforados/química
3.
J Genet Eng Biotechnol ; 21(1): 3, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630019

RESUMO

BACKGROUND: CRISPR/Cas9 is the most powerful and versatile genome-editing tool that permits multiplexed-targeted gene modifications for the genetic enhancement of oil palm. Multiplex genome-editing has recently been developed for modifying multiple loci in a gene or multiple genes in a genome with high precision. This study focuses on the development of high-oleic oil palm, the primary target trait for healthy low-saturated oil. To achieve this, the fatty acid desaturase 2 (FAD2) and palmitoyl-acyl carrier protein thioesterase (PAT) genes, both of which are associated with fatty acid metabolism biosynthesis pathways in oil palm, need to be knocked out. The knockout of FAD2 and PAT leads to an accumulation of oleic acid content in oil palms. RESULTS: A total of four single-guide RNAs (sgRNAs) were designed in silico based on the genomic sequences of EgFAD2 and EgPAT. Using robust plant CRISPR/Cas9 vector technology, multiple sgRNA expression cassettes were efficiently constructed into a single-binary CRISPR/Cas9 vector to edit the EgFAD2 and EgPAT genes. Each of the constructed transformation vectors was then delivered into oil palm embryogenic calli using the biolistic, Agrobacterium-mediated, and PEG-mediated protoplast transformation methods. Sequence analysis of PCR products from 15 samples confirmed that mutations were introduced at four target sites of the oil palm EgFAD2 and EgPAT genes. Single- and double-knockout mutants of both genes were generated, with large and small deletions within the targeted regions. Mutations found at EgFAD2 and EgPAT target sites indicate that the Cas9/sgRNA genome-editing system effectively knocked out both genes in oil palm. CONCLUSION: This technology is the first in oil palm to use CRISPR/Cas9 genome-editing to target high-oleic-associated genes. These findings showed that multiplex genome-editing in oil palm could be achieved using multiple sgRNAs. Targeted mutations detected establish that the CRISPR/Cas9 technology offers a great potential for oil palm.

4.
Int J Surg Case Rep ; 101: 107789, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36459851

RESUMO

INTRODUCTION AND IMPORTANCE: Aseptic loosening in high placement of the acetabular component seriously affects the hip and femoral head loads. Surgery revision is highly recommended with defect closure in previous place. CASE PRESENTATION: A-40-year-old man came with chief complaint of right groin pain and noticeable leg length discrepancy gait. The first hip arthroplasty through pseudo-acetabulum cup was done three years ago after neglected femoral head necrosis due to eight years of unknown hip dislocation in vehicle accident. On hip x-ray there is a screws and cup loosening, without any sign of infection from blood or from soft tissue which undergoes pathological and mold examination. The patient than assessed with periprosthetic aseptic loosening of hip dextra and simple total hip arthroplasty revision using true acetabulum location was done. The pseudo-acetabulum area closed with morselized bone autograft. One weeks after surgery, the wound healed properly. Hence, the patient sent to the rehabilitation. CLINICAL DISCUSSION: Hip arthroplasty revision of aseptic loosening in high placement acetabular component should perform by returning to anatomical acetabular position. Cancellous morselized bone autograft (MBA) was used to closed the defect formed by previous procedure. CONCLUSION: Revision of hip arthroplasty combined with morselized bone autograft can be considered for high placement acetabular component defect closure to provide better stability and strength in weight loads transfer.

5.
Int J Surg Case Rep ; 97: 107410, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35858492

RESUMO

INTRODUCTION AND IMPORTANCE: The rotational deformity is formed due to the instability of the fixation device used before in a spiral or oblique fracture pattern, and will create uncomfortable sensation also disturb daily activities. This condition usually treated with several methods of osteotomies and implants, that involving large wound and longer period of healing. CASE PRESENTATION: A 27-year-old male with chief complaint of discomfort sensation when the ring finger flexed and it was disturbing the daily activities. Two years ago, the patient was diagnosed with minimally displace closed fracture of the ring finger phalanx media and treated with buddy tapping for six months and become a malunion until now. Multiple drill hole osteotomy were made to correct the rotational position and fixed with Herbert screws. Three months follow up, the wound healed nicely and able to perform his daily activity. CLINICAL DISCUSSION: Malunion that was formed from previous inadequate treatment could make uncomfortable sensation and disturbing daily activities usually treated with large osteotomies. Multiple drill hole (MDH) usage in combination with the Herbert screw to fix the new fracture line had several advantages compared to standard methods that were previously performed. CONCLUSION: The combination of multiple drill hole and Herbert screws could be an alternative procedure with minimal surgical wounds. Without implant removal in the future, the patient can proceed to rehabilitation and return to his daily activities.

6.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263223

RESUMO

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Assuntos
Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C , Hepatite C , Imunogenicidade da Vacina , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Anticorpos Amplamente Neutralizantes/biossíntese , Anticorpos Amplamente Neutralizantes/sangue , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Camundongos , Multimerização Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
7.
Methods Mol Biol ; 2464: 187-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35258834

RESUMO

The protocol outlined in this chapter describes a detailed procedure for protoplast isolation and transformation using polyethylene glycol (PEG)-mediated transfection and DNA microinjection, highlighting also the critical steps associated with the method. Briefly, we will describe the efficient isolation of protoplasts from 3-month-old suspension calli collected at 14 days after cultured. Digestion of the calli with an optimal composition of enzyme solution yielded over 2 × 106 protoplasts/mL with the viability of more than 80%. The concentrations of DNA, PEG, and magnesium chloride and application of heat shock treatment are the crucial determinants for efficient PEG-mediated transfection. Using the optimal PEG transfection conditions, a transfection efficiency of more than 20% could be obtained. At the same time, protoplasts embedded in alginate layer cultured for 3 days and injected with 100 ng/µL of total DNA solution are the optimal factors for microinjection. We successfully regenerated the injected protoplasts to calli expressing green fluorescent protein (GFP) signals when cultured in optimal medium and cultivation procedures.


Assuntos
Polietilenoglicóis , Protoplastos , DNA/genética , DNA/metabolismo , Microinjeções , Polietilenoglicóis/metabolismo , Protoplastos/metabolismo , Transfecção
8.
J Biomater Appl ; 36(7): 1269-1276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34911392

RESUMO

The most widely used biomaterials in the treatment of massive bone defects are allograft bone or metal implants. The current problem is that the availability of allographs is limited and metal implants are very expensive. Mass production of secretome can make bone reconstruction of massive bone defects using a scaffold more effective and efficient. This study aims to prove bone regeneration in massive bone defects using bovine hydroxyapatite reconstruction with normoxic and hypoxic secretome conditions using collagen type 1 (COL1), alkaline phosphate (ALP), osteonectin (ON), and osteopontin (OPN) parameters. This is an in vivo study using male New Zealand white rabbits aged 6-9 months. The research was carried out at the Biomaterials Center-Tissue Bank, Dr. Soetomo Hospital for the manufacturer of bovine hydroxyapatite (BHA) and secretome BM-MSC culture under normoxic and hypoxic conditions, and UNAIR Tropical Disease Institute for implantation in experimental animals. Data analysis was carried out with the one-way ANOVA statistical test and continued with the Post Hoc test LSD statistical test to determine whether or not there were significant differences between groups. There were significant differences between hypoxic to normoxic group and hypoxic to BHA group at day-30 observation using ALP, COL 1, ON, and OPN parameters. Meanwhile, there is only osteonectin parameter has significant difference at day-30 observation. At day-60 observation, only OPN parameter has significant differences between hypoxic to normoxic and hypoxic to BHA group. Between day-30 and day-60 observation, BHA and normoxic groups have a significant difference at all parameters, but in hypoxic group, there are only difference at ALP, COL 1, and ON parameters. Hypoxic condition BM-MSC secretome with BHA composite is superior and could be an option for treating bone defect.


Assuntos
Durapatita , Secretoma , Animais , Regeneração Óssea , Bovinos , Modelos Animais de Doenças , Masculino , Oxigênio , Coelhos
9.
J Funct Biomater ; 14(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36662063

RESUMO

Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.

10.
J Blood Med ; 12: 601-611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267571

RESUMO

INTRODUCTION: Peripheral blood mononuclear cells (PBMCs) sensitized with mesenchymal stem cells (MSCs) secretome and/or colony stimulating factor-2 (CSF-2) as an immunotherapy candidate may escalate osteosarcoma stem cells (OS-SCs) apoptosis. This study aimed to investigate the escalation of osteosarcoma stem cells' apoptosis after the co-cultivation with PBMCs sensitized by MSCs secretome with/or CSF-2 and it was completed by analyzing the level of serum tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) and tumor necrosis factor-α (TNF-α) level, annexin V binding, caspase-3 and caspase-8 expression in vitro. METHODS: OS-SCs were derived from a single human osteosarcoma sample with its high grade and osteoblastic essential clinical characteristics obtained from a biopsy before the chemotherapy treatment. They were then isolated and cultured confirmed by the cluster of differentiation-133 (FITC) by applying immunofluorescence analysis with fluorescein isothiocyanate (FITC) labeled. MSCs secretome was obtained with cells extracted from the bone marrow of a healthy patient. Furthermore, enzyme linked immunosorbent assay (ELISA) was utilized to analyze sTRAIL and TNF-α level in each group. The expression of caspase-3, caspase-8, and annexin V assay in each group was examined by applying the immunofluorescence labeled with FITC. The comparison analysis between treatment groups and the control group was performed by utilizing the analysis of variance (ANOVA) and continued with Tukey Honest Significant Difference (HSD) (p<0.05). RESULTS: There was a significant difference in the upregulation of sTRAIL and TNF-α level indicated by the increased annexin V, caspase-3, and caspase-8 expression binding between groups (p<0.05). CONCLUSION: MSCs Secretome and CSF-2 could significantly increase the activity of PBMCs through the improvement of sTRAIL and TNF-α levels which could lead to the escalation of OS-SCs apoptosis through an enhanced expression of caspase 3, caspase 8 and annexin V binding in vitro.

11.
J Genet Eng Biotechnol ; 19(1): 86, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115267

RESUMO

BACKGROUND: Genome editing employing the CRISPR/Cas9 system has been widely used and has become a promising tool for plant gene functional studies and crop improvement. However, most of the applied CRISPR/Cas9 systems targeting one locus using a sgRNA resulted in low genome editing efficiency. RESULTS: Here, we demonstrate the modification of the FAD2 gene in rice using a multiplex sgRNA-CRISPR/Cas9 genome editing system. To test the system's efficiency for targeting multiple loci in rice, we designed two sgRNAs based on FAD2 gene sequence of the Oryza sativa Japonica rice. We then inserted the validated sgRNAs into a CRISPR/Cas9 basic vector to construct pYLCRISPRCas9PUbi-H:OsFAD2. The vector was then transformed into protoplast cells isolated from rice leaf tissue via PEG-mediated transfection, and rice calli using biolistic transformation. Direct DNA sequencing of PCR products revealed mutations consisting of deletions of the DNA region between the two target sgRNAs. CONCLUSION: The results suggested that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing system may be useful for crop improvement in monocot species that are recalcitrant to genetic modification, such as oil palm.

12.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431677

RESUMO

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Assuntos
Hepacivirus/efeitos dos fármacos , Anticorpos Anti-Hepatite C/biossíntese , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Expressão Gênica , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Multimerização Proteica , Receptores Virais/genética , Receptores Virais/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética
13.
Mol Pharm ; 18(2): 726-734, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530637

RESUMO

Two well-defined synthetic polyphosphazene immunoadjuvants, PCPP and PCEP, were studied for their ability to potentiate the immune response to the hepatitis C virus (HCV) E2 glycoprotein antigen in vivo. We report that PCEP induced significantly higher serum neutralization and HCV-specific IgG titers in mice compared to other adjuvants used in the study: PCPP, Alum, and Addavax. PCEP also shifted the response toward the desirable balanced Th1/Th2 immunity, as evaluated by the antibody isotype ratio (IgG2a/IgG1). The in vivo results were analyzed in the context of antigen-adjuvant molecular interactions in the system and in vitro immunostimulatory activity of formulations. Asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) analysis showed that both PCPP and PCEP spontaneously self-assemble with the E2 glycoprotein with the formation of multimeric water-soluble complexes, which demonstrates the role of polyphosphazene macromolecules as vaccine delivery vehicles. Intrinsic in vitro immunostimulatory activity of polyphosphazene adjuvants, which was assessed using a mouse macrophage cell line, revealed comparable activities of both polymers and did not provide an explanation of their in vivo performance. However, PCEP complexes with E2 displayed greater stability against agglomeration and improved in vitro immunostimulatory activity compared to those of PCPP, which is in line with superior in vivo performance of PCEP. The results emphasize the importance of often neglected antigen-polyphosphazene self-assembly mechanisms in formulations, which can provide important insights on their in vivo behavior and facilitate the establishment of a structure-activity relationship for this important class of immunoadjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos da Hepatite C/administração & dosagem , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/administração & dosagem , Vacinas contra Hepatite Viral/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Feminino , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/virologia , Antígenos da Hepatite C/imunologia , Antígenos da Hepatite C/ultraestrutura , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Animais , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/imunologia , Polímeros/administração & dosagem , Polímeros/química , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Relação Estrutura-Atividade , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/ultraestrutura , Vacinas contra Hepatite Viral/imunologia
14.
3 Biotech ; 10(12): 530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33214977

RESUMO

Cetyltrimethylammonium bromide (CTAB) is the preferred detergent in RNA extraction of oil palm tissues. However, the CTAB-based protocol is time-consuming. In this study, a combination of the CTAB-based method and silica-based purification reduced the extraction time from two days to five hours. Quality of total RNA from 27 different tissues of oil palm was shown to have an RNA integrity number (RIN) value of more than seven. The extracted RNA was evaluated by RT-qPCR using three reference oil palm genes (GRAS, CYP2, and SLU7) and three putative mesocarp-specific transcripts annotated as WRKY DNA-binding protein 70 (WRKY-70), metallothionein (MT) and pentatricopeptide repeat (PPR) genes. Tissue-specific expression profiling across complete developmental stages of mesocarp and vegetative tissues was determined in this study. Overall, the RNA extraction protocol described here is rapid, simple and yields good quality RNAs from oil palm tissues.

15.
ACS Appl Bio Mater ; 3(5): 3187-3195, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33880435

RESUMO

Resiquimod or R848 (RSQD) is a Toll-like receptor (TLR) 7/8 agonist which shows promise as vaccine adjuvant due to its potential to promote highly desirable cellular immunity. The development of this small molecule in the field to date has been largely impeded by its rapid in vivo clearance and lack of association with vaccine antigens. Here, we report a multimeric TLR 7/8 construct of nano-scale size, which results from a spontaneous self-assembly of RSQD with a water-soluble clinical-stage polymer - poly[di(carboxylatophenoxy)phosphazene] (PCPP). The formation of ionically paired construct (PCPP-R) and a ternary complex, which also includes Hepatitis C virus (HCV) antigen, has been demonstrated by dynamic lights scattering (DLS), turbidimetry, fluorescence spectroscopy, asymmetric flow field flow fractionation (AF4), and 1H NMR spectroscopy methods. The resulting supramolecular assembly PCPP-R enabled superior immunostimulation in cellular assays (mouse macrophage reporter cell line) and displayed improved in vitro hemocompatibility (human erythrocytes). In vivo studies demonstrated that PCPP-R adjuvanted HCV formulation induced higher serum neutralization titers in BALB/c mice and shifted the response towards desirable cellular immunity, as evaluated by antibody isotype ratio (IgG2a/IgG1) and ex vivo analysis of cytokine secreting splenocytes (higher levels of interferon gamma (IFN-γ) single and tumor necrosis factor alpha (TNF-α)/IFN-γ double producing cells). The non-covalent multimerization approach stands in contrast to previously suggested RSQD delivery methods, which involve covalent conjugation or encapsulation, and offers a flexible methodology that can be potentially integrated with other parenterally administered drugs.

16.
J Adv Pharm Technol Res ; 11(4): 213-219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425707

RESUMO

The advanced, metastasis, and reccurent of osteosarcoma (OS) patients have a poor prognosis postaggresive surgery and chemotherapy. Peripheral blood mononuclear cells (PBMCs) as cell-based immunotherapy may successful in the OS treatment. To investigate the enhancement apoptosis of OS-mesenchymal stem cells (OS-MSCs) co-cultivated with PBMCs sensitized using the secretome and granulocyte macrophage colony-stimulating factor (GMCSF). This true experimental study with posttest only control group design and in vitro study. The sample was cultured OS-MSCs which confirmed by Cluster of Differentiation-133 using immunocytochemistry (ICC) and histopathology analysis. The sample divided into six groups accordingly: OS-MSC, OS-MSC + PMBC, OS-MSC + PMBC + Secretome, OS-MSC + PMBC + GMCSF, OS-MSC + PBMC + Secretome + GMCSF (n = 5/N = 30). The enhancement of OS-MSCs apoptosis was analyzed through Interleukin-2 (IL-2) level through the Enyzme-Linked Immunosorbent Assay examination, expression of Signal Transducers and Activators of Transcription (STAT)-3 and caspase-3 by ICC. One-way analysis of variance test and Tukey Honestly Significant Difference to analyze the difference between the groups (P < 0.05). The highest of IL-2 level was found in the PBMC + Secretome + GMCSF group. The highest expression of caspase-3 was found in OS-MSC + PBMC + Secretome + GMCSF group with significant different between groups (P < 0.05). There was insignificant difference of STAT-3 epxression and IL-2 level between groups (P > 0.05). The co-cultivation of OS-MSCs and PBMSCs activated using secretome and GMCSF has a great ability to enhance OS-MSCs apoptosis.

17.
Front Plant Sci ; 6: 727, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442041

RESUMO

DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.

18.
Front Plant Sci ; 6: 598, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322053

RESUMO

Biodegradable plastics, mainly polyhydroxybutyrate (PHB), which are traditionally produced by bacterial cells, have been produced in the cells of more than 15 plant species. Since the production of biodegradable plastics and the synthesis of oil in plants share the same substrate, acetyl-coenzyme A (acetyl-CoA), producing PHB in oil bearing crops, such as oil palm, will be advantageous. In this study, three bacterial genes, bktB, phaB, and phaC, which are required for the synthesis of PHB and selectable marker gene, bar, for herbicide Basta resistant, were transformed into embryogenic calli. A number of transformed embryogenic lines resistant to herbicide Basta were obtained and were later regenerated to produce few hundred plantlets. Molecular analyses, including polymerase chain reaction (PCR), Southern blot, and real-time PCR have demonstrated stable integration and expression of the transgenes in the oil palm genome. HPLC and Nile blue A staining analyses confirmed the synthesis of PHB in some of the plantlets.

19.
Plant Cell Rep ; 34(4): 533-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25480400

RESUMO

Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.


Assuntos
Arecaceae/genética , Biotecnologia/métodos , Lipídeos/análise , Óleos de Plantas/química , Arecaceae/enzimologia , Lipídeos/biossíntese , Óleo de Palmeira , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética
20.
PLoS One ; 9(5): e96831, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24821306

RESUMO

BACKGROUND: Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. METHODOLOGY/PRINCIPAL FINDINGS: We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. CONCLUSIONS/SIGNIFICANCE: We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.


Assuntos
Microinjeções/métodos , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Protoplastos/metabolismo , Óleo de Palmeira , Plantas Geneticamente Modificadas/citologia , Transfecção/métodos , Transformação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...